Transition Metal-Modified Zirconium Phosphate Electrocatalysts for the Oxygen Evolution Reaction

نویسندگان

  • Joel Sanchez
  • Mario V. Ramos-Garcés
  • Ieva Narkeviciute
  • Jorge L. Colón
  • Thomas F. Jaramillo
چکیده

Zirconium phosphate (ZrP), an inorganic layered nanomaterial, is currently being investigated as a catalyst support for transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Two metal-modified ZrP catalyst systems were synthesized: metal-intercalated ZrP and metal-adsorbed ZrP, each involving Fe(II), Fe(III), Co(II), and Ni(II) cations. Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the composite materials and confirm the incorporation of the metal cations either between the layers or on the surface of ZrP. Both types of metal-modified systems were examined for their catalytic activity for the OER in 0.1 M KOH solution. All metal-modified ZrP systems were active for the OER. Trends in activity are discussed as a function of the molar ratio in relation to the two types of catalyst systems, resulting in overpotentials for metal-adsorbed ZrP catalysts that were less than, or equal to, their metal-intercalated counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

Metal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5799 wileyonlinelibrary.com issues associated with energy security and environmental pollution. [ 1–5 ] Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are the most crucial electrochemical reactions to realize energy storage and conversion in these technologies. Although Pt-, Ir-, and Ru-ba...

متن کامل

Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanopar...

متن کامل

Recent Progress on MOF‐Derived Heteroatom‐Doped Carbon‐Based Electrocatalysts for Oxygen Reduction Reaction

The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy-conversion technologies such as fuel cells and metal-air batteries. It is crucial to develop a cost-effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon-based electrocatalysts derived from metal-organic framewo...

متن کامل

Facile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction

In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017